Tanshinone IIA Restrains Hepatocellular Carcinoma Progression by Regulating METTL3-Mediated m6A Modification of TRIB3 mRNA
Main Article Content
Abstract
Background/Aims: Hepatocellular carcinoma (HCC) is a molecularly heterogeneous solid malignancy that carries a dismal prognosis. Tanshinone IIA (Tan-IIA) is involved in the regulation of N6-methyladenosine (m6A) modification and plays an anti-tumor role in HCC, but whether Tan-IIA regulates HCC by mediating m6A modification is unclear.
Methods and Materials: Cell apoptosis, invasion, proliferation, viability, and stemness were estimated with flow cytometry, transwell, 5-ethynyl-2’-deoxyuridine, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide, and sphere-forming assays. Methyltransferase-like 14 (METTL14) and 3 (METTL3) mRNA and protein levels were detected with reverse transcription-quantitative polymerase chain reaction and western blotting. Total m6A levels were measured using an m6A RNA methylation quantification kit. A possible regulation of tribbles pseudokinase-3 (TRIB3) expression by METTL3 in an m6A-modified manner was predicted through RM2Target and SRAMP and verified by m6A methylated RNA immunoprecipitation (MeRIP) and RIP. Mouse xenograft models assessed the action of Tan-IIA in HCC tumorigenesis.
Results: Tanshinone IIA restrained HCC cell viability, proliferation, invasion, and stemness, and induced HCC cell apoptosis invitro, as well as repressed tumor growth in xenograft models. METTL3 and TRIB3 were upregulated in HCC samples and downregulated in TanIIA-treated HCC cells and xenograft tumors. METTL3 facilitated HCC cell viability, proliferation, invasion, and stemness by enhancing TRIB3 mRNA stability through m6A modification. Tan-IIA played its role by downregulating TRIB3, and Tan-IIA mediated TRIB3 expression by METTL3.
Conclusion: Tanshinone IIA restrained HCC progression by regulating METTL3-mediated m6A modification of TRIB3 mRNA, offering evidence to support the clinical translation of Tan-IIA.
Cite this article as: Jiang Y, Wang X, Wang Z, et al. Tanshinone IIA restrains hepatocellular carcinoma progression by regulating METTL3-mediated m6A modification of TRIB3 mRNA. Turk J Gastroenterol. 2025;36(7):431-441.
Article Details
References
1. Vogel A, Meyer T, Sapisochin G, Salem R, Saborowski A. Hepatocellular carcinoma. Lancet. 2022;400(10360):1345-1362. [CrossRef]
2. Dopazo C, Søreide K, Rangelova E, et al. Hepatocellular carcinoma.
Eur J Surg Oncol. 2024;50(1):107313. [CrossRef]
3. Suresh D, Srinivas AN, Prashant A, Harikumar KB, Kumar DP. Therapeutic options in hepatocellular carcinoma: a comprehensive
review. Clin Exp Med. 2023;23(6):1901-1916. [CrossRef]
4. Rashidi R, Jahed Avval Boroomand F, Ghasemian S, et al. Hydroalcoholic extract of Psoralea drupacea Inhibits Proliferation
and Migration of Hepatocellular Carcinoma Cells and Decreases
angiogenesis in Chick chorioallantoic Membrane. Lett Drug Des Discov. 2023;20:1284-1294.
5. Alawyia B, Constantinou C. Hepatocellular carcinoma: a narrative
review on current knowledge and future prospects. Curr Treat
Options Oncol. 2023;24(7):711-724. [CrossRef]
6. Ansari MA, Khan FB, Safdari HA, et al. Prospective therapeutic
potential of tanshinone IIA: an updated overview. Pharmacol Res.
2021;164:105364. [CrossRef]
7. Yang C, Mu Y, Li S, Zhang Y, Liu X, Li J. Tanshinone IIA: a Chinese
herbal ingredient for the treatment of atherosclerosis. Front Pharmacol. 2023;14:1321880. [CrossRef]
8. Fang ZY, Zhang M, Liu JN, Zhao X, Zhang YQ, Fang L. Tanshinone
IIA: a review of its anticancer effects. Front Pharmacol. 2020;11:611087.
[CrossRef]
9. Ma L, Jiang H, Xu X, et al. Tanshinone IIA mediates SMAD7-YAP
interaction to inhibit liver cancer growth by inactivating the transforming growth factor beta signaling pathway. Aging (Albany NY).
2019;11(21):9719-9737. [CrossRef]
10. Liang EY, Huang MH, Chen YT, et al. Tanshinone IIA modulates
cancer cell morphology and movement via Rho GTPases-mediated
actin cytoskeleton remodeling. Toxicol Appl Pharmacol.
2024;483:116839. [CrossRef]
11. Nagaraju GP, Dariya B, Kasa P, Peela S, El-Rayes BF. Epigenetics
in hepatocellular carcinoma. Semin Cancer Biol. 2022;86(3):622-
632. [CrossRef]
12. Wang T, Kong S, Tao M, Ju S. The potential role of RNA N6-methyladenosine in Cancer progression. Mol Cancer. 2020;19(1):88.
[CrossRef]
13. Condic M, Ralser DJ, Klümper N, et al. Comprehensive analysis of
N6-methyladenosine (m6A) writers, erasers, and readers in cervical
cancer. Int J Mol Sci. 2022;23(13). [CrossRef]
14. Zhao K, Yang CX, Li P, Sun W, Kong XQ. Epigenetic role of
N6-methyladenosine (m6A) RNA methylation in the cardiovascular
system. J Zhejiang Univ Sci B. 2020;21(7):509-523. [CrossRef]
15. Qu N, Bo X, Li B, et al. Role of N6-methyladenosine (m(6)A) methylation regulators in hepatocellular carcinoma. Front Oncol.
2021;11:755206. [CrossRef]
16. Wang YF, Ge CM, Yin HZ, et al. Dysregulated N6-methyladenosine (m(6)A) processing in hepatocellular carcinoma. Ann Hepatol.
2021;25:100538. [CrossRef]
17. Huang H, Bai Y, Lu X, Xu Y, Zhao H, Sang X. N6-methyladenosine
associated prognostic model in hepatocellular carcinoma. Ann
Transl Med. 2020;8(10):633. [CrossRef]
18. Pan F, Lin XR, Hao LP, Chu XY, Wan HJ, Wang R. The role of RNA
methyltransferase METTL3 in hepatocellular carcinoma: results and
perspectives. Front Cell Dev Biol. 2021;9:674919. [CrossRef]
19. Fan Z, Yang G, Zhang W, et al. Hypoxia blocks ferroptosis of
hepatocellular carcinoma via suppression of METTL14 triggered
YTHDF2-dependent silencing of SLC7A11. J Cell Mol Med.
2021;25(21):10197-10212. [CrossRef]
20. Zhang M, Chen Y, Chen H, et al. Tanshinone IIA alleviates cardiac
hypertrophy through m6A modification of galectin-3. Bioengineered.
2022;13(2):4260-4270. [CrossRef]
21. Pan Y, Chen H, Zhang X, et al. METTL3 drives NAFLD-related
hepatocellular carcinoma and is a therapeutic target for boosting
immunotherapy. Cell Rep Med. 2023;4(8):101144. [CrossRef]
22. Wang L, Yi X, Xiao X, Zheng Q, Ma L, Li B. Exosomal miR-628-5p
from M1 polarized macrophages hinders m6A modification of circFUT8 to suppress hepatocellular carcinoma progression. Cell Mol Biol
Lett. 2022;27(1):106. [CrossRef]
23. Zhang C, Dai D, Zhang W, Yang W, Guo Y, Wei Q. Role of m6A
RNA methylation in the development of hepatitis B virus-associated hepatocellular carcinoma. J Gastroenterol Hepatol. 2022;37(11):
2039-2050. [CrossRef]
24. Zhu ZM, Huo FC, Zhang J, Shan HJ, Pei DS. Crosstalk between
m6A modification and alternative splicing during cancer progression. Clin Transl Med. 2023;13(10):e1460. [CrossRef]
25. Feng Q, Wang D, Xue T, et al. The role of RNA modification in
hepatocellular carcinoma. Front Pharmacol. 2022;13:984453.
[CrossRef]
26. Lin Z, Niu Y, Wan A, et al. RNA m6 A methylation regulates
sorafenib resistance in liver cancer through FOXO3-mediated
autophagy. EMBO J. 2020;39(12):e103181. [CrossRef]
27. Wei T, Li J, Zhang J, et al. Loss of Mettl3 enhances liver tumorigenesis by inducing hepatocyte dedifferentiation and hyperproliferation. Cell Rep. 2023;42(7):112704. [CrossRef]
28. Wang L, Yang Q, Zhou Q, et al. METTL3-m(6)A-EGFR-axis drives
lenvatinib resistance in hepatocellular carcinoma. Cancer Lett.
2023;559:216122. [CrossRef]
29. Hu J, Chen K, Hong F, Gao G, Dai X, Yin H. METTL3 facilitates
stemness properties and tumorigenicity of cancer stem cells in
hepatocellular carcinoma through the SOCS3/JAK2/STAT3 signaling pathway. Cancer Gene Ther. 2024;31(2):228-236. [CrossRef]
30. Jiang X, Liu B, Nie Z, et al. The role of m6A modification in the
biological functions and diseases. Signal Transduct Target Ther.
2021;6(1):74. [CrossRef]
31. Mondal D, Mathur A, Chandra PK. Tripping on TRIB3 at the junction of health, metabolic dysfunction and cancer. Biochimie.
2016;124:34-52. [CrossRef]